미분적분학 3판 解法(솔루션) Robert T. 스미스 (Smith) CALCULUS STUDENT SOLUTION MA…
페이지 정보
작성일 19-09-20 22:48
본문
Download : 미분적분학 3판 솔루션 Robert T. Smith - CALCULUS_STUDENT_SOLUTION_MANUAL_2007_SMITH_3RD_EDITION.pdf
미분적분학 3판 解法(솔루션) Robert T. Smith - CALCULUS_STUDENT_SOLUTION_MANUAL_2007_SMITH_3RD_EDITION
설명
미분적분학 3판 솔루션 Robert T. Smith - CALCULUS_STUDENT_SOLUTION_MANUAL_2007_SMITH_3RD_EDITION , 미분적분학 3판 솔루션 Robert T. 스미스 (Smith) CALCULUS STUDENT SOLUTION MANUAL 2007 SMITH 3RD EDITION수학솔루션 , 미분적분학 3판 솔루션 Robert T Smith - CALCULUS_STUDENT_SOLUTION_MANUAL_2007_SMITH_3RD_EDITION
미분적분학,3판,솔루션,Robert,T,Smith,-,CALCULUS_STUDENT_SOLUTION_MANUAL_2007_SMITH_3RD_EDITION,수학,솔루션
Download : 미분적분학 3판 솔루션 Robert T. Smith - CALCULUS_STUDENT_SOLUTION_MANUAL_2007_SMITH_3RD_EDITION.pdf( 21 )
순서
솔루션/수학
integral and derivative학 3판 해결책 Robert T. Smith - CALCULUS_STUDENT_SOLUTION_MANUAL_2007_SMITH_3RD_EDITION
CHAPTER 1 PRELIMINARIES
1.1 REAL NUMBERS AND THE REAL LINE 1. Executing long division, 2. Executing long division,
9 11
œ 0.1,
2 9
œ 0.2,
2 11
3 9
œ 0.3,
3 11
8 9
œ 0.8,
9 11
9 9
œ 0.9
11 11
œ 0.09,
œ 0.18,
œ 0.27,
œ 0.81,
œ 0.99
3. NT = necessarily true, NNT = Not necessarily true. Given: 2 < x < 6. a) NNT. 5 is a counter example. b) NT. 2 < x < 6 E 2 c 2 < x c 2 < 6 c 2 E 0 < x c 2 < 2. c) NT. 2 < x < 6 E 2/2 < x/2 < 6/2 E 1 < x < 3. d) NT. 2 < x < 6 E 1/2 > 1/x > 1/6 E 1/6 < 1/x < 1/2. e) NT. 2 < x < 6 E 1/2 > 1/x > 1/6 E 1/6 < 1/x < 1/2 E 6(1/6) < 6(1/x) < 6(1/2) E 1 < 6/x < 3. f) NT. 2 < x < 6 E x < 6 E (x c 4) < 2 and 2 < x …(To be continued )
미분적분학 3판 解法(솔루션) Robert T. 스미스 (Smith) CALCULUS STUDENT SOLUTION MANUAL 2007 SMITH 3RD EDITION
다.